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Abstract 

 We have observed kHz and sub-kHz resonance structures in rf-optical double resonance 

experiments of rare-earth-doped solids, when the frequency of the rf field is scanned across the 

hyperfine transitions while monitoring the resonant optical absorption of a cw laser.  The effect 

is observed only when the laser spectral width is broad compared to the hyperfine structure.  The 

observed line widths are apparently free of the inhomogeneous widths of hyperfine levels and 

the line shape has peculiar double peak structure.  The effect is modeled with a resonance 

involving three atomic levels interacting with three electromagnetic fields, two optical and one 

rf, in a triangular or ‘delta’ configuration.  While the ordinary optical-rf two-field resonance is 

limited by spin inhomogeneous width, the simultaneous excitation of three coupled transitions 

lead to narrow and highly nonlinear resonance structures that does not get averaged by the 

inhomogeneous distribution of hyperfine transition.   
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Observation of Sub-kilohertz Resonance in Rf-Optical Double Resonance 

Experiment in Rare Earth Ions in Solids 

 

1. INTRODUCTION 

We have observed a peculiarly narrow resonance structure in the course of optical-rf double 

resonance experiment of rare earth ions in solids.  The resonance is characterized by a sharp 

double peak structure in the absorption spectrum as the rf frequency is scanned across the 

hyperfine transition, with the few kHz width of the transparency hole at least an order of 

magnitude narrower than the spin inhomogeneous width.  The effect is evident only when the 

laser bandwidth is larger than the hyperfine level splittings.  A theoretical model is presented 

based on the assumption that the optical fields of a noisy laser simultaneously couples an 

optically excited state with two hyperfine levels of the ground state, which in turn are acted on 

by the rf field.  A quantum interference effect among the three coupled transitions creates sharp 

fringes in the frequency domain that does not get averaged out by ensemble average over the 

inhomogeneous broadening of the optical or spin transitions. The model is found to be consistent 

with the main features of the experimental observations. 

Various quantum interference effects in atomic transitions have recently been the 

research topic of great interest, because of the rich and often counter-intuitive physics and their 

potential applications in nonlinear optical devices and spectroscopy.  For example, in 

electromagnetically induced transparency (EIT) [1, 2], multiple paths of transitions created by 

the ac Stark effect of a strong coupling field can cause destructive interference and result in a 

transparency hole in the absorption spectrum.  The effect is applied in the enhanced harmonic 

generation [3, 4], wave mixing[5, 6], and amplification and laser action without population 
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inversion [7, 8, 9].  Similar processes occur in coherent population trapping [10, 11, 12, 13] of 

resonant Raman interaction [14, 15],  where the spin coherence created by Raman optical fields 

gives rise to quantum interference and transparency hole in the absorption spectrum.  The spin 

coherence can be created by directly applying an rf field on the spin transition, and this also 

results in transparency [16].  In most of these systems, the basic process is an interaction of a 

three level system with two electromagnetic fields, where the two transitions or some linear 

combinations interfere against each other to create a characteristic transparency hole in the 

absorption spectrum.  A general requirement for the observation of the transparency hole is that 

the coupling field be strong enough to overcome the inhomogeneous broadening. For example, 

in resonant Raman interference, the optical Raman Rabi frequency needs to be large compared to 

the hyperfine inhomogeneous width [15] in order for the coherent population trapping to produce 

observable hole in the absorption spectrum. A few authors have investigated interaction of 

closed loop of transitions including a triangular resonance [17, 18], but it appears these studies 

have been restricted to the cases of time-dependence and phase-dependence of the system 

response at exact resonance only. 

There are a number of spectral line-narrowing processes that have made great 

contributions in the various areas of laser spectroscopy.  Examples are laser induced 

fluorescence [19],  spectral hole burning [20],  Doppler-free spectroscopy by multiphoton 

processes [21], Ramsey resonance by separated fields [22],  and various double resonance 

methods [23, 24].   Most often the strategy is to reduce or eliminate the effect of inhomogeneous 

broadening of the spectral lines, in order to reveal the natural or homogeneous line widths.  The 

experiments described here started out as an optical-rf double resonance experiment, where the 

spectral line width is expected to be limited by the spin inhomogeneous width.  The observed 
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narrow resonance structure and the proposed theoretical model of three-level three-field 

interaction allows spectral resolution even below the spin inhomogeneous line width.   

 

2. EXPERIMENT 

The experiments are performed using an apparatus shown in Fig. 1, with a ring dye laser that 

provides about 500 mW of output.  An acoustooptic modulator is used to turn the laser pulses on 

and off.  The laser light then enters the sample crystal in a liquid helium cryostat. A 15-turn rf 

coil is wound around the crystal and the transmitted light through the crystal is detected by a 

photodiode.  The rf field, up to 30 MHz, for the coil is generated using a synthesized function 

generator, which is switched and amplified up to 2 W power.  A digital delay generator provides 

the timing signals.  The detected signal is fed into a lock-in amplifier or to a digital oscilloscope, 

and a desktop computer running LabView controls all the digital instruments, and collects and 

processes the data. Data presented below utilize three different detection methods. One is lock-in 

amplifier output of transmitted optical signal with pulsed optical field and cw rf field (‘optical 

lock-in signal’); another is lock-in amplifier output with cw optical field and pulsed rf field (‘rf 

lock-in signal’); and the third is the output of digital oscilloscope showing averaged time signal 

of photodiode (‘time signal’). 

Fig. 2a) shows an example of the observed resonance structure when the transmitted light 

is lock-in detected while the rf frequency is scanned near the 7 MHz hyperfine transition of the 

3H4 ground state.  The sample is 0.1 at. % Pr3+:YAlO3 of 17 mm length at temperature of 4.2 K. 

(See Refs. [23, 25, 26, 27, 28] for spectroscopic details of Pr3+:YAlO3.)  The optical field is 

tuned to 610.53 nm 3H4 — 1D2 transition, where the optical density of the crystal is ~0.4, or 30% 

absorption.  For most of the measurements the optical field is chopped by the AOM at 1 kHz 
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with 50 % duty cycle, while the rf field is cw. Note the very narrow 2.1 kHz transparency hole 

centered at 7.1162 MHz. The vertical scale is proportional to the transmitted light and the figure 

indicates close to 70% maximum absorption, relative to off-resonance background, on either side 

of the central hole, but almost complete transmission at the center of the hole. This was 

consistent with naked eye observation of the laser beam transmitted through the crystal. The 

structure disappears, however, when the laser frequency is stabilized to less than a few MHz, as 

shown in Fig. 2b), where the overall transmittance is higher compared to Fig. 2a) because of 

spectral hole burning. (Even when the laser frequency is slowly scanned to reduce the spectral 

hole burning effect, the above resonance structure is not observed.) The ground state hyperfine 

transitions are previously known to have center frequencies 7.057, 14.13, and 21.19 MHz with 

inhomogeneous widths of ~ 50 kHz. For comparison, Fig. 2c) shows the hyperfine 

inhomogeneous line at 7.06 MHz transition as detected by photon echo nuclear double resonance 

(PENDOR). We have also found similar structures near the others of these frequencies: 14.233 

MHz and 21.349 MHz, with the respective gap widths of 3.0 and 3.5 kHz.  Furthermore, we have 

observed 0.65 kHz gap structure at 10.433 MHz, Fig. 2d), and 1.0 kHz gap structure at 17.390 

MHz in Pr3+:Y2SiO5, where the corresponding known hyperfine frequencies are 10.19 and 17.30 

MHz with inhomogeneous width of ~ 40 kHz [29, 30].  As indicated above, a very important 

observational peculiarity is that these narrow transparency hole structures appear only when the 

laser is known to have large bandwidth compared to the hyperfine transition frequencies.  When 

the laser stabilization circuit is locked to reduce the bandwidth to a few MHz or less, the kHz 

hole structures disappear. The laser frequency structure is monitored with a Fabry-Perot 

interferometer to have about 40 MHz bandwidth when the stabilization was inactive, with 

additional fluctuation over ~100 MHz range. When the stabilization is locked the laser 
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bandwidth is measured to be at most 3~4 MHz, and had occasional mode-hops. The laser cavity 

mode spacing is 240 MHz. 

We have experimentally studied the behavior of the resonance structure with respect to a 

number of experimental parameters.  For example, Fig. 3 shows that the increasing rf field 

strength broadens the width of the side wings proportionately, but the width of the gap remains 

constant. The rf circuit is not resonant or matched but if we assume a few gauss of rf magnetic 

field strength and 2.4 kHz/G gyromagnetic ratio of the 3H4 hyperfine levels, the spin Rabi 

frequency is expected to be a few kHz. Figure 4 shows the behavior when the optical field 

strength is varied using neutral density filters.  There is a moderate but clear increase of the gap 

width as the optical power increases. The optical power that enters the sample is about 10 mW 

and the 2-mm diameter beam is focussed by a 30 cm lens. If we assume a ratio (atomic 

homogeneous width)/(laser spectral width) = 10–4 and oscillator strength of 3 x 10–7, the optical 

Rabi frequency is ~3 kHz.  Fig. 5 shows the evolution of resonance lineshape as the pulse length 

is increased. The rf lock-in signal has zero background and the resonance curve displays distinct 

and reproducible structures.  The rf pulse length is varied from 100 µs to 800 µs while the 

repetition rate is kept at 1 kHz.  One can see the establishment of the resonance structure in a few 

hundred µs.  Notice also the high degree of symmetry of the detailed lineshape with respect to 

the center of the resonance.  The high ‘frequency’ wiggle is due to the 1 kHz lock-in cycle. In 

order to ascertain that the main features of these observations are not artifacts of lock-in 

detection, we have acquired 2.0 ms long time signal, averaged 300 shots at 100 Hz repetition 

rate, of the transmitted light using a digital oscilloscope, then scanned the rf frequency from 7.11 

to 7.13 MHz in 0.5 kHz steps, to compose a time-frequency profile of the resonance structure.  A 

result is shown in Fig. 6a), where basically all the features of the frequency-domain data are 
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reproduced, including the gradual sharpening of the double peak structure as a function of time. 

Figure 7 shows a few of individual time signal traces for various rf frequencies. Further 

observational notes are that the observed resonance structure disappears quite abruptly when the 

temperature rises beyond 10 K, and that we have looked for similar effects in Pr3+:LaF3 but 

found none. We have also measured the resonance structure vs. rf frequency at various optical 

detuning, and only observed variations in overall signal size and some detailed shapes of the 

central peaks. 

 

3. THEORY 

We propose to model the observed resonance effect as a three-level atomic system interacting 

with three electromagnetic fields (3L3F) in a delta-shape configuration, as shown in Fig. 8.  The 

system consists of two hyperfine levels |1> and |2> of the ground state, with eigen energies εi (i 

= 1, 2), and an optically excited level |3>, with ε3 = 0.  The optical field is  

E = 1
2 E1e

−iω1t + E2e
−iω 2t{ }+ c.c.  and we assume that Ei’s couple the |i>–|3> transitions 

independently, with Rabi frequencies 
  
Ω i =

piEi

2=
 (pi: |i>–|3> transition electric dipole moments) 

and detuning parameters   ∆ i = ε3 − ε i( )/ = − ω i .  (Note that the definition of Rabi frequency here 

is one half of more conventional definition.)  These transitions have population relaxation rates 

Γi, and phase relaxation rates γi.  The two ground states |1>–|2> are coupled by the rf magnetic 

field, with similarly defined parameters: field frequency, ω’; Rabi frequency of magnetic dipole 

transition, Ω’; detuning,   ′ ∆ = ε2 − ε1( )/ = − ′ ω ; population relaxation rate, Γ’; and phase 

relaxation rate γ’. 

The density matrix equation of motion [31, 32] 
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d
dt ρω = − i

= H ω , ρω[ ]+ relaxation terms( )     (1) 

 

is written in a rotating reference frame defined with 

 

 Uω =
e− iω1t 0 0

0 e− iω2t 0
0 0 1

 

 

 
 
 

 

 

 
 
 
       (2) 

 

so that 

 

 ρω = Uω ρUω
−1 ≡

ρ1 ′ σ σ1

′ σ * ρ2 σ2

σ1
* σ2

* ρ3

 

 

 
 
 

 

 

 
 
 

,      (3) 

 

where ρ = Ψ Ψ  is the density matrix in the lab frame.  The Hamiltonian in this rotating frame 

is, with the three-photon resonance detuning δ = ∆’ – (∆1 – ∆2), 

 

 

    

H ω = Uω HUω
−1 + i= d

dt Uω( )Uω
−1

=
−=∆1 −= ′ Ω e− iδt −=Ω1

−= ′ Ω eiδt −=∆2 −=Ω2

−=Ω1 −=Ω2 0

 

 

 
 
 

 

 

 
 
 

.     (4) 

 

The rotating wave approximation is used where we neglect the terms of frequencies 2ω1 and 2ω2 

compared to dc terms, as well as the terms of frequency (ω1 – ω2 + ω’) compared to δ = (ω1 – ω2 
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– ω’).  Notice that this Hamiltonian is time-dependent.  For a three-level three-field system, it is 

in general not possible to find a rotating frame that completely removes the time-dependence of 

the Hamiltonian.  The explicit form of the equations of motion (1) is written out as: 

 

 

Ý ρ 1 = −iΩ1 σ1 − σ1
*( )− i ′ Ω e+ iδt ′ σ − e−iδt ′ σ *( )+ Γ1ρ3 − 1

2 ′ Γ ρ1 − ρ2( )
Ý ρ 2 = −iΩ2 σ2 −σ 2

*( )+ i ′ Ω e+iδt ′ σ − e− iδt ′ σ *( )+ Γ2ρ3 + 1
2 ′ Γ ρ1 − ρ2( )

Ý ρ 3 = +iΩ1 σ1 −σ1
*( )+ iΩ2 σ 2 −σ 2

*( )− Γ1 + Γ2( )ρ3

Ý σ 1 = −iΩ1 ρ1 − ρ3( )+ i ′ Ω e−iδtσ2 − iΩ2 ′ σ − γ 1 − i∆1( )σ1

Ý σ 2 = −iΩ2 ρ2 − ρ3( )+ i ′ Ω e+ iδtσ1 − iΩ1 ′ σ * − γ 2 − i∆2( )σ 2

Ý ′ σ = −i ′ Ω e− iδt ρ1 − ρ2( )− iΩ2σ1 + iΩ1σ2
* − ′ γ − i ∆1 − ∆2( )( ) ′ σ 

 

 

 
 
 
  

 

 
 
 
 
 

  (5) 

 

Because of the time-dependence, it is not possible to write a formal solution to the density matrix 

equation using matrix exponential, and it appears rather difficult to discern the general behavior 

of the solution.  However, an analogy with a single-function equation of motion, in the form 

dz
dt

= −γ + iΩ + i ′ Ω eiδt[ ]z t( )  may be made whose solution contains a factor for example 

z ~ cos
sinδt
δ / ′ Ω 

 
  

 
  .  Because of the sinc function argument in the cosine, there are rapid oscillations 

as δ approaches zero.  Numerical calculation of the three-level system displays analogous 

behavior, as will be seen below.  This rapid oscillation washes out any inhomogeneous 

distribution of the detuning parameter δ, except at the exact center of the distribution.   

 The equation of motion (Eq. 5) is solved numerically using Runge-Kutta method on 

MatLab.  A single-atom solutions are then accumulated over the inhomogeneous distribution of 

the spin and optical transitions. The level |3> population ρ3 is plotted as a measure of optical 
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absorption, as a function of rf detuning ∆’. The top trace of Fig. 9a) shows a result of such 

calculation.  The separation of the double peak is the Raman Rabi frequency 2Ω = 2 Ω1
2 + Ω2

2 .  

On top of the double peak structure, there is a rapid oscillation in frequency domain with period 

of 1/2t.  The width of each of the double peaks is proportional to the spin Rabi frequency, but the 

optical dephasing γ also broadens it.  Also note that the center of the resonance is exactly zero 

with respect to the off-resonance background. (For the top trace of Fig. 9a) the off-resonance 

background level is ρ3 = 0.217 and the peak level is 0.226, so that the peak represents < 5% 

change in calculated ρ3.)  This 3L3F solution is contrasted with a three-level two-field (3L2F) 

solution in Fig. 9b), where there are one optical and one rf fields, corresponding to a normal 

optical-rf double resonance experiment.  Again the double peak separation corresponds to optical 

Rabi frequency for ac Stark effect.  Note that there is no rapid oscillation structure, and that the 

resonance center is above zero with respect to the off-resonance background. There appear 

marked differences between the two-field and three-field solutions when they are integrated over 

the inhomogeneous broadening of atoms.  For the 3L2F case, the double peak structure is 

smeared out immediately when it is integrated over the spin inhomogeneous width and the 

integrated resonance curve has the spin inhomogeneous width.  On the other hand, there is no 

qualitative change in the resonance shape of 3L3F solution when it is integrated over the spin 

inhomogeneous width.  When integrated over the optical broadening, the gap between the double 

peak narrows but remains non-zero.  One also notices that there is a qualitative change in the 

resonance line shape and that the center of resonance is still zero with respect to the off-

resonance background.   

 Next let us examine the behavior of the 3L3F solution, integrated over optical 

inhomogeneous width, with respect to various parameters.  Fig. 10 shows its dependence on the 
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spin Rabi frequencies.  As the spin Rabi frequency increases, the width of the wings increase 

proportionately and the amplitude of the signal increases as the square of the Rabi frequency, but 

the width of the gap does not change. The increase of optical Rabi frequency results, Fig. 11, in 

the proportionate increase of the gap width. On the other hand, the numerical experiments show 

that the gap width and structure are also dependent on the phase relaxation rates of the spin and 

optical transitions. In Fig. 12, the increase in spin phase relaxation rate γ’ results in reduction of 

overall resonance structure but the resonance widths remain the same. Quite unexpectedly 

however, when the optical phase relaxation rate γ is increased in Fig. 13, the resonance structure 

becomes narrower and sharper. The population relaxation rates Γ’s do not affect the resonance 

shape appreciably. Figure 6b) shows the time-frequency plot of the resonance for a particular set 

of parameters indicated in the caption. 

 

4. DISCUSSION 

The numerical analysis based on the model of three-level atoms interacting with three 

electromagnetic fields has several important features that are consistent with the experimental 

observations.  First, the resonance lineshape has the distinct double-peak structure. The width of 

the gap is very small compared to the inhomogeneous width of the spin transition. This double 

peak structure is averaged out and absent in the case of two-field rf-optical double resonance. 

Also notice that the shape of the calculated resonance structure, integrated over optical 

linewidth, has the distinct shape observed experimentally. Second, there is the fringe pattern in 

the frequency domain with “period” equal to the inverse of the pulse length.  Third, the increase 

of the width of the wings with respect to the rf field strength is well verified by the experiment.  

With an estimated few gauss of rf magnetic field strength and 2.4 kHz/G gyromagnetic ratio of 
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the 3H4 hyperfine levels, the spin Rabi frequency is expected to be a few kHz.  Although the 

magnetic field is not calibrated, at least the order of magnitude appears reasonable.  But more 

importantly, the wing width does increase in proportion with the field strength. As for the 

dependence of the gap width on the optical Rabi frequency, the experimental data shows much 

slower than linear dependence seen in the theory. One may attribute this tentatively to the effect 

of the optical phase relaxation. The gap width calculated according to the theoretical model 

appears to be determined by the optical Rabi frequency, but the optical phase relaxation also 

narrows the gap width. This behavior is very nonlinear and it is difficult to predict the gap width 

in terms of experimental parameters, except to say that the maximum gap width is proportional 

to the optical Rabi frequency. Some of the numerical results suggest that the optical phase 

relaxation attenuates the rapid oscillation in the vicinity of the resonance and thereby reduces the 

range of frequency where the singular oscillation due to three-photon resonance is effective, and 

results in the narrowing of the resonance structure. Another point of difficulty is that the 

observed center frequency of resonance is some tens of kHz away from the previously known 

hyperfine frequencies, and it also varies by a few kHz between different experimental runs. 

The three-level three-field model seems to offer at least partial explanations for the 

observed peculiar resonance structure. The model also seems intuitively reasonable in that there 

is a singularity of some sort when three transitions form a closed loop resonance. As with a set of 

three coupled mechanical oscillators, the three driving fields need to have exact frequency and 

phase match in order to sustain the oscillation. On the other hand, the model assumes two 

simultaneous cw monochromatic fields, whereas in a real dye laser the instantaneous spectrum of 

the laser may be more likely single mode with occasional mode hop. Therefore, we may modify 

the model by allowing only a single optical field with fluctuating frequency. But if the 
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fluctuation is faster than the optical phase relaxation time, then an optical transition will retain 

the laser phase memory while the laser jumps back and forth between different frequencies. A 

simple numerical calculation with two non-overlapping laser pulses each resonant with one of 

the two optical transitions shows that the singular oscillatory behavior persists as far as the delay 

between the two pulses is not longer than the optical phase relaxation time. In this regard, one 

may note that among the three samples that we have studied, Pr3+ in YAlO3 (T2 = 35 µs), YSO 

(110 µs), and LaF3 (6 µs), we have not observed the resonance structure in LaF3. Also note that 

quite often the laser fluctuation can be approximated as a contribution to the optical phase 

relaxation. A systematic development of the revised model with fluctuating field needs to be 

carried out. 

In summary, we have observed a peculiar resonance structure in a rf-optical double 

resonance experiment of rare earth-doped crystals, characterized by a double peak structure of 

only a few kHz width. A numerical study based on a model consisting of three-level atoms 

interacting with three simultaneous electromagnetic fields shows some of the main features 

consistent with the experimental data, such as the peculiar resonance lineshape and its 

dependence on the rf and optical Rabi frequencies.  
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FIGURES 

Fig. 1: Schematic of apparatus. RDL: ring dye laser; AOM: acoustooptic modulator; S: sample 

crystal with rf coil inside a liquid helium cryostat; D: photodiode; DDG: digital delay 

generator; SFG: synthesized function generator; VCO: voltage controlled oscillator; SW: 

rf switch; AMP: 2W rf amplifier; DSO: digital oscilloscope; LIA: lock in amplifier; PC: 

desktop computer controlling digital devices (*). 

Fig. 2:  a) Optical lock-in signal, in arbitrary units, vs. rf frequency for 3H4 to 1D2 transition in 

Pr3+:YAlO3 near 7 MHz when the laser is not stabilized, and b) when the laser is 

stabilized. For optical lock-in signal the optical field is pulsed at 1 kHz rate with 50% 

duty cycle while the rf field is cw. c) The stimulated photon echo signal vs. frequency of 

rf pulse applied during the 100 µs period between the second and third pulses of 

stimulated photon echo experiment. d) Optical lock-in signal vs. rf frequency for 3H4 to 

1D2 transition in Pr3+:Y2SiO5 near 10 MHz. 

Fig. 3: Optical lock-in signal vs. rf frequency for varying rf field strengths.  Relative rf field 

amplitudes, from top to bottom, is nominally 1:2:4:8:16.  (Different lock-in amplifier 

gains have been used between different traces, so that the relative vertical scales should 

not be compared between them. The glitch on the right end of top trace is an 

experimental artifact.) 

Fig. 4: Optical lock-in signal vs. rf frequency for varying optical field strengths.  Neutral density 

filters of optical density, from top to bottom, 0.04, 0.5, 1.0, 1.5, and 2.0 are inserted 

before the sample. Another set of neutral density filters are used in front of the detector to 

adjust detectable signal levels. 
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Fig. 5: Rf lock-in signal vs. rf frequency for varying rf pulse length. For rf lock-in signal the 

optical field is cw while rf field is pulsed at 1 kHz.  The rf pulse lengths are, from top to 

bottom, 100, 200, 300, 400, 500, 600, 700, and 800 µs. 

Fig. 6: Oscilloscope time signal of transmitted light when 5 ms long rf pulse is applied. The rf 

frequencies are, from top to bottom, 7110, 7111, 7112, 7113, 7114, and 7115 kHz. The 

horizontal scale is 1 ms/div and the signals are averaged for 1000 sweeps. 

Fig. 7: a) Experimental and b) calculated profiles of optical signals vs. time and rf frequency.  

The vertical scale in a) is the photodiode voltage measured on the oscilloscope, and in b) 

it is the population of level |3>, which is inverted in order to represent higher absorption 

with larger |3> state population. The parameters used in b) are: Γ1 = Γ2 = 1, Γ’ = 0; γ1 = 

γ2 = 2π; γ’ = 0.4π; Ω1 = Ω2 = 4π; Ω’ = 0.2π; integrated over optical inhomogeneous width 

of 20, in steps of 0.5 and spin inhomogeneous width of 10, in steps of 0.5.  The FREQ 

axis is ∆’/2π.  

Fig. 8: A three-level three-field (3L3F) system.   

Fig. 9: a) Calculated profile of 3L3F resonance, ρ3 vs. ∆’/2π. Top: Single atom calculation: Γ1 = 

Γ2 = 1; Γ’ = 0; γ1 = γ2 = 2π; γ’ = 0.4π; Ω1 = Ω2 = 4π; Ω’ = 0.2π; ∆1 = ∆2 = 0; t = 2.5. 

Middle: Integrate over optical inhomogeneous width of 20, in steps of 0.4. Bottom: 

Integrate over spin inhomogeneous width of 20, in steps of 0.4. b) Calculated profile of 

3L2F resonance.  All parameters are the same as in a), except that Ω2 = 0. 

Fig. 10: Calculated profile of 3L3F resonance for varying spin Rabi frequencies: from top to 

bottom, Ω’ = 0.2π, 0.4π, 0.8π.  All other parameters are the same as in the middle trace of 

Fig. 9a). 
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Fig. 11: Calculated profile of 3L3F resonance for varying optical Rabi frequencies: from top to 

bottom, Ω1 = Ω2 = 2π, 4π, 6π.  All other parameters are the same as in  the middle trace 

of Fig. 9a). 

Fig. 12: Calculated profile of 3L3F resonance for varying spin phase relaxation rates: from top to 

bottom, γ’ = 0.2π, 0.4π, 0.8π.  All other parameters are the same as in  the middle trace of 

Fig. 9a). 

Fig. 13: Calculated profile of 3L3F resonance for varying optical phase relaxation rates: from top 

to bottom, γ1 = γ2 = 1π, 2π, 4π.  All other parameters are the same as in the middle trace 

of Fig. 9a). 
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